Title


“Zeolite Catalysis for Carbon Neutrality”


Speaker

写真

Toshiyuki Yokoi
Professor
Nanospace Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology
iPEACE223 Inc.

Date & Venue

1:30 pm - 2:30 pm on August 6th, 2024
Multi-Purpose Digital Hall, Ookayama Campus

Abstract

Abstract [PDF]

 Zeolites have widely been used as solid acid catalysts in the production of chemicals and fuels. The acidity of zeolite originates from the protons of the bridging OH groups between the framework Si and Al atoms. Since the control of environment of active sites in heterogeneous catalysts is one of the important factors for affecting the catalytic activity, the zeolites with framework Al distribution controlled have attracted much attention. We have developed several approaches to its control by means of different types of the organic-structure-directing-agents (OSDAs) [1, 2], the starting materials [3] and so on. Besides, metal-containing zeolites have received much attention because they have diverse catalytic functions such as hydrogenation, dehydrogenation, oxidation, and C-H activation. We have also succeeded in controlling the location of metal cations in zeolites [4-6].

 Thus, zeolites have been considered as a key material for achieving a Carbon Neutrality 2050. In this presentation, our recent achievements on the zeolite catalysis for activation of C1 molecules including CH3OH, CH4, and CO2 will be focused. The methanol to olefins reaction [7, 8], methane to methanol [5, 6, 9-11], and hydrogenation of carbon dioxide to methanol [12] will be introduced.

 Recently, I’m involved in a start-up company, iPEACE223 Inc. [13], which has been qualified as “Tokyo Tech Venture”. iPEACE223 stands for Innovative Process for Eliminating Anthropogenic CO2 Emission (IPEACE), and Catalytic conversion ethylene to propylene (ETP, two to three: 223). Our goal is to establish a novel ETP process to produce propylene and its derivatives from bioethanol via ethylene, contributing to the achievement of carbon neutrality.

References
[1] Yokoi, T.; Mochizuki, H; Namba, S.; Kondo, J. N.; Tatsumi, T, The Journal of Physical Chemistry C, 2015, 119, 15303?15315
[2] Biligetu, T.; Wang, Y.; Nishitoba, T.; Otomo, R.; Park, S.; Mochizuki, H.; Kondo, J.N.; Tatsumi, T.; Yokoi, T. Journal of Catalysis, 2017, 353, 1-10.
[3] Nishitoba, T.; Yoshida, N.; Kondo, J.N.; Yokoi, T., Industrial & Engineering Chemistry Research, 2018, 57, 3914-3922.
[4] Osuga, R.; Bayarsaikhan, S.; Yasuda, S.; Manabe, R.; Shima, H.; Tsutsuminai, S.; Fukuoka, A.; Kobayashi, H.; Yokoi, T., Chemical Communications, 2020, 56, 5913-5916.
[5] Xiao, P.; Wang, Y.; Lu, Y.; DeBaerdemaeker, T.; Parvulescu, A.-N.; Muller, U.; De Vos, D.; Meng, X.; Xiao, F.-S.; Zhang, W.; Marler, B.; Kolb, U.; Gies, H.; Yokoi. T. Applied Catalysis B: Environmental, 2023, 122395.
[6] Nakamura, K.; Xiao, P.; Osuga, R.; Wang, Y.; Yasuda, S.; Matsumoto, T.; Kondo N. J., Yabushita, M.; Muramatsu, M.; Gies, H.; Yokoi, T. ,Catalysis Science & Technology, 2023, 13, 2648-2651.
[7] Sawada, M.; Matsumoto, T.; Osuga, R.; Yasuda, S.; Park, S.; Wang, Y.; Kondo, J.N.; Onozuka, H.; Tsutsuminai, S.; Yokoi, T., Industrial & Engineering Chemistry Research, 2022, 61, 4, 1733?1747.
[8] Wang, Y.; Yokoi, T.; Tatsumi, T., Microporous and Mesoporous Materials, 2023, 358, 112353.
[9] Xiao, P.; Nakamura, K.; Lu, Y.; Huang, J.; Wang, L.; Osuga, R.; Nishibori, M.; Wang, Y.; Gies, H.; Yokoi, T., ACS Catalysis, 2023, 13, 16168-16178.
[10] Xiao, P.; Wang, Y.; Wang, L.; Toyoda, H.; Nakamura, K.; Bekhti, S.; Lu, Y.; Huang, J.; Gies, H.; Yokoi, T., Nature Communications, in press, 10.1038/s41467-024-46924-2
[11] Xiao, P.; Wang, Y. Lu, Y.; Nakamura, K.; Ozawa, N.; Kubo, M.; Gies, H.; Yokoi, T. J. Am. Chem. Soc. 2024, 146, 14, 10014?1002210.
[12] Kanomata, R.; Awano, K.; Fujitsuka, H.; Kimura, K.; Yasuda, S.; Simancas, R.; Bekhti, S.; Wakihara, T.; Yokoi, T.; Tago, T., Chemical Engineering Journal, 2024, 149896.
[13] URL: https://ipeace223.com/en/

[Contact]
yokoi@cat.res.titech.ac.jp

Home